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. 

Abstract. We consider the probability P(r)  that a given site remains unvisited by my of a sei 
of random walkers in d dimensions undergoing the reaction A i  A -, 0 when they meet. We 
find that, asymptotically, P(r) - f 4  with a universal exponent 8 = t - O(E)  ford = 2 - f ,  
while, for d > 2, 0 is non-universal and depends on the reaction rate. The analysis, which 
uses field-theoretic renormalimtion-soup methods, is also applied to the reaction k A  + 0 with 
k > 2. In this case, a stretched exponential behaviour is found for all d > 1, except in the case 
k = 3. d = 1. where P ( f )  - e-cons~"f~r-.  

In a recent letter, Denida et a[ [l] have found new non-trivial and apparently 
universal exponents associated with the zero-temperature relaxational dynamics of the 
one-dimensional Ising and Potts models. The occurrence of such exponents is surprising 
given the trivial nature of the conventional static and dynamic exponents in these models. 
However, the quantity considered by theie authors, namely the probability P ( t )  that starting 
from a random initial configuration, a given site has not been crossed by a domain wall, 
is not simply related to the usual response functions, and might be expected to show more 
interesting behaviour. The fact that a simple universal power law P ( t )  - t-@ IS ' obtained 
for lqge t, however, requires some explanation. 

In this letter, we provide such an explanation within the context of a  generalization^ of 
this probtem~to arbitrary dimensionality d. Since the motion of domain walls for d. ? I is 
very difficult to treat analytically, instead we observe that, in one dimension, the motion 
and annihilation of Ising 'domain walls at zero temperature is eqiivaleut to a reaction- 
diffusion process of point particles A undergoing the irreversible reaction A + A + 0. The 
study of thii problem is readily capable of generalization to arbitrary d, and many of its 
features have already been elucidated using a number of approaches [2]. In  particular,^ it 
is found that there is an upper critical dimension d, = 2, above which the mean density 
n(t) behaves as l / (At) ,  where A is the reaction rate, as predicted by a simple rate equation 
neglecting correlation effects, while for d < 2; these effects cannot~be ignored and the 
behaviour is modified to t-d/*, with an amplitude independent of A. Recently, a systematic 
field-theoretic renormalization-goup approach to this problem has been developed [3], 
which not only yields the exponents but also correlation functions and universal amplitudes 
within an +expansion. It is also straightforward to generalize the analysis to the reaction 
EA + 0. In this case, above the upper critical dimension d,(k) = 2 / (k  - l), one finds 
n(t) - I/(ht)dc(k)/2, while for d < dc, n(t)  - rd/* with a universal amplitude. 

Within this type of reaction-diffusion'problem, then, we ask the following question: 
from a random initial condition (mean density no) at time t = 0, what is the late-time 
dependence of the probability P(r)  that a given site has never been visited by a walker? A 
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simple approach to this problem is to note that P(t) - P(t+Gt) is the probability of finding 
a walker at the given site (the origin, say), in the time interval ( t ,  t + Gt), given that the 
origin has never been visited in the past. This will happen only if a particle happens to lie 
close, to the origin at time t. Thus, 

- P'(t)Gt - DGtP(t)E(t) 

where D is the diffusion constant aid E ( t )  is the density at a site adjacent to the origin, 
given that the origin is never visited, that is, with a repulsive potential there. 

For d > 2, only a finite fraction of particles near the origin has ever visited the origin 
in the past, so that Z ( t )  a n( t )  - t-h(k)lz. For k = 2, this leads to P(t )  - t-constln, 
i.e. a power law with a non-universal exponent, while for k > 2, we obtain a stretched 
exponential behaviour P(t )  - e-c"srt"-"'u-'' . Ford c 2, however, almost all particles near 
the origin have visited it at some time in the past, so that E ( t )  << n(r). When 2 > d > d,(k) 
(which is possible when k > 2). particle correlations may be neglected and we may use the 
inhomogeneous rate equation ~~ 

anjat  = DVZn - khnk (1) 

selecting the required events by imposing the condition n(r = 0, t )  = 0. This problem has 
the radially symmetric scaling solution n(r, t )  = t4 ( ' ) l z f ( r / (Dt) ' /* ) .  For r << (Dt)'!', 
the nonlinear term is unimportant (corresponding to the fact that the density is so low 
that annihilation events rarely occurj, and f satisfies Laplace's equation with solution 
f - (r / (Df) ' / ' )<,  where E = 2 - d. Thus, ii(t) - n(t)t-ffl  and the stretched exponential 

. Ford < d,(k), if we assume that E ( t )  is suppressed relative becomes P( t )  - e--mnsft 
to~the bulk density by this same factor, we find that E ( t )  - t-d/2-f/z = t - l ,  resulting in a 
power law P( t )  - t-6 consistent with the, result of Derrida et a1 111. However, to justify 
this argument and to demonstrate the universality of 8,  it is necessary to proceed more 
systematically. 

We first relate P(t )  to an appropriate correlation function in the field-theoretic 
description of the problem. We follow the notation and formalism of 131. Following 
Doi 141 and Peliti [5 ] ,  the master equation for the reaction-diffusion problem is encoded in 
a Hamiltonian, or Liouvillean, which may be expressed in the 'second-quantized' form 

Id4dJ)Ml  

H = ( ~ / b ' )  - a,i)(ai - aj) - A C(I - (ai) t k  )ai k 
".". 1 

where the first term is a sum over nearest neighbours and represents a conthhous-time 
random walk on a lattice with spacing b, and the second term represents the annihilation 
process kA -+ 0. The time translation operator is e-Ht, which may be written as a path' 
integral by dividing the interval (0, t )  into small slices of duration At.  At each slice, a 
complete set of coherent states 

is inserted (lattice labels are suppressed for clarity). The matrix elements (Ole+:+~f~e4~~'[0) = 
e+:+u+j then give rise, when combined with the measure factors e-+:+,, to the time-derivative 
piece in the action 
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i n  the limit At + 0. 
In the second quantized formalism, the probability P(t )  that a given site, which may 

be chosen to be the origin j = 0, is never visikd is simply given by inserting the operator 
&u;uo,o at each time slice. Thus, at the origin, instead of the matrix element given above, 
one should compute 

( o l e ~ ~ + ~ ~ ' ~ , t , o e ~ ~ u l ~ )  = I 

which means that, to leading order in At, the factor from the measure is not cancelled, 
corresponding to an insertion of n, 7-bc,h,f in the path integral. In the continuum limit, 
the lattice fields are rescaled so that v$ + b d y $ ,  so that finally 

P ( t )  = S D C D B e x p (  -hSO*(O,~)d(O,t)dt  ) exp(-S[$*,@I) 

where h = bd/At .  
As explained in [3,5], in order to compute statistical averages with respect to the action 

S, it is necessary to evaluate projections onto the state (01 nj ea>. It is then convenient to 
make the shift @' = 1 + 4, so that 4 annihilates this state when acting to the l e k  The 
required insertion then has two pieces 

exp (- h L'B(0. t')+(O, t') dt') and exp 

In the first factor, the time integral can be taken up to infinity, and thus the term 
h J i ( 0 ,  t ' ) $ (O ,  t') dt' may be regarded as a repulsive potential and included in the action 
S, while the second factor is the piece whose expectation value we now wish to evaluate 
with respect to this modified action. It is convenient to rewrite this as a cumulant expansion 

P ( t )  - (exp ( - h 1' @(O, t') df) )  

Dimensional analysis then dictates that h has dimension (wave so .the 
additional interaction term is irrelevant for d z 2 and may therefore be neglected in 
studying the late-time asymptotics. For d > d&), the arguments of 131 show that all loop 
corrections to the field theory are also irrelevant. The sum of the wee diagrams is then given 
by the solution to the naive rate equation ($(O, f)) - I/(ht)4")/z. (In fact the amplitude 
will be modified in the neighbourhood of the origin, but not the exponent, ford  > 2.) On 
substitution into the first term of the cumulant expansion, this then leads to the same result 
as the earlier naive argument. The higher-order terms in the cumulant expansion all involve 
at least one more power of 1 and, hence, their integrals are down by successive powers of 
r-(d-&(k))/*. The appearance of the borderline dimensionality d = 2 is simply related to the 
recurrence property of random waks. 

For d e 2, however, the h interaction is either marginal or relevant, and it is necessary 
to perform a full renormalization-group analysis. Fortunately, this is fairly simple since the 
renormalizations of h and h do not mix. This is because the renormalization of h may be 
discussed in terms of its contribution to the propagator (@(n. t )J (x ' ,  t')), to which h does 
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not contribute, while, since A is a bulk coupling, its renormalization cannot be affected by 
the localized interaction h$@(O). The bulk renormalization of A is discussed in [3]. Here 
we use the notation e,  to denote the dimensionless renonnalized coupling A R ~ - a ' / d ( k ) ,  

where E' = d&) - d. The renormalization of h is then carried out for A = 0. Since 
thii i s  a Gaussian theory, this is simple but non-trivial, due to the localized form of the 
interaction. The renormalised COUphg.hR may be defined in terms of the truncated Fourier- 
Laplace transform of (@(x, t)$(o,t')@(O, t')$(x", t")), evaluated at   the normalization-point 
imaginary frequency s = K'. We thus find 

hR = h (1 hzd(K) ) - '  

. ,  

where 

The dimensionless coupling g R  = ~ R K - ~  (where now E = 2 - d) then has the beta function 
, ,  I 

&(gR) = + B(d)gi 

where B(2) = l/2a. This is exact to all orders in gR. In addition to the coupling constant 
renormalization, however, it is necessary to perform a multiplicative renormalization of 
@(O, t ) .  This may be seen by considerfng the correlation function (@(O, t )$ (p  = 0, t = O)), 
whose Laplace transform is i-'(l +h&(s'/2))-', of which the divergence ford = 2 cannot 
be removed by the renormalization of h. We therefore define &(O, t )  = &@(O, t )  to 
remove this factor, where ZO = 1 + (B(d)/s)hK-'. 

Consider now ~ i ) ( r ,  gR, tR, K )  = (@R(o, t ) ) .   his satisfies a renormalization-group 
equation 

where yo = ( K a / a K )  In Z, = -B(d)gR. The solution as I + 00, for h < 2, is 

(3 ) 

where g' = $/B(d)  and &t) is the finning coupling eR. The first prefactor on the right- 
hand side comes from the canonical scaling dimension of @, the second'from the anomalous 
dimension yo(g")." 

For k > '2, there is a regime where d&) c d < 2. In this case, A is irrelevant and 2 - 
.&Id<@), with E' < 0. The correlation function of the right-hand side of 'equation (3) is then 
given by the sum of tree diagrams, equivalent to solving inhomogeneous rate equation (1) 
(with @ replacing n) with the boundary condition K e g * @ @ )  = lim,,o &rd-'a4/ar, which 
comes from varying with respect to $(o) and integrating by parts. & is the area of a 
unit d-dimensional sphere and i, = Z K ~ .  The solution is proportional to X-dc(k)/2, so that 
C i ) ( t )  - I/t'+"12. As before, the higher cumulants are irrelevant for d z d,(k), so we 
obtain the stretched exponential result for P(t )  given in the summary below. At d = 2, the 
prefactor (~'t)-'/' is replaced by (In(K2t))-'. This results in an extra (lnt)-' factor in the 
exponent. 

2 -d /2  2 -s/Z (1) 2 * " Ci'(t9 gR. t R ,  K )  ,- (K t )  ( K  t) CR ( K -  9 g r e(t), K )  
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When d < d,(k); l also flows towards a non-hivial fixeil point e’ =.O(E‘), so that the 
correlation function on the right-hand side of equat$n (3) is asymptotically independent of 
t .  The prefactors’combine to give a simple l/t’dependen&, which inte-ates to give lnt. 
The amplitude of this term is given, to leading order in E’, by settin e e* in’ the solution 

come from loop corrections to the right-hand side and, more importantly, from the higher- 
order cumulants, which satisfy similar renormalization-group equations and whose integrals 
all~scale like Int. However, their amplitudes are suppressed for small E‘ by powers of 
E‘(~-~)/(~-’). Ford = d,(k), i(t) flows to zero like (lnt)-’, so that Cc1) - (l/t)(lnf)l/(k;l), 
with the higher-order cumulants being suppressed only by powers of In t .  

of equation (I), which gives a universal amplitude of O(E’-&(~)/ t =  ). Corrections, to this, 

To summarise the dfierent cases when k > 2, we have ’ ~ . 

exp(- const tl-&@)/’) d 2 2  
exp(-wnstt’-d~(k)/2/Int) d = 2 ’ ’ 

P(t )  = exp(- const t ( d 4 ( k ) ) p )  2 > d z dJk) 
exp(- conston d = d,(k) 

’ . d < &(k) with 0 = U(E’-‘(~)~). ’ 

Turning now to k = 2,’ the case d > 2 has already been discussed. For d < 2, the 
same arguments as for k . s  2 show that P ( t )  - t-@ , with a universal exponent. However, 
the dependence on E is now of a different form. To leading order, we may solve the, fate 
equation to calculate the right-hand side of equation (3). setting i = I* and g* = 0. (Higher- 
order terms in g’ are higher order in E . )  This means that the amplitude is, to leading order, 
that of the bulk density [3] (&(t)) - 1/(4nc)i. In addition, there is a factor of hZ;’ - 2ne 
in relating h(@(O, t ) )  to Cg)(t). Thus, the factors of E cancel and we find 

~ = $ + O ( E ) .  (4) 
, .  

The case d = 2 is the most interesting, since both h &d h are marginally irrelevant there. 
In this case, the prefactor behaves as (41r/h)(lnt)-’, while @ ( O , f )  (to leading order in 
gR) behaves as (1/8x)(lnt/r) [31. Thus, we get a competition between the two running 
couplings which results in a power behaviour for P( t ) ,  with 0 = $, consistent with its limit 
as E + 0. Although equation (4) has the appearance of a conventional mean-field result 
with 0 ( E )  corrections below d = d, = 2, this is not the case: the value of 0 ford = ‘2 comes 
about by a subtle cancellation of fluctuation effects, and the exponent, for d > d,, is not 
universal. In addition, ford = 2, the corrections to C(”(t) are suppressed by powers of Int 
only. Thus, the leading corrections to lnP(t) are proportional to f(l/t’lnt’)dt’ - lnlnt. 
This will give a logarithmic prefactor multiplying the power law t - I I 2 .  Unfortunately, the 
calculation of the exponent of this logarithm requires a two-loop calculation which is more 
difficult. 

In principle, it is possible to compute higher-order terms in the E-expansion (4). 
However, a similar expansion [3] for the bulk density amplitude does not appear to 
extrapolate well to d = 1. The O ( E )  corrections to equation (4), which come from the 
second cumulant in equation (2), are expected to be negative, consistent with the result 
of Derrida et a1 [l], who find that 0 Ft: 0.37 for d = 1. It is also straightforward to 
extend the analysis of the case k = 2 to include the reaction A + A + A. If  the rate 
for this second process is A’, the effect is to change the interaction part of the action S 
to (2A + + (A + A’)&2. This may be brought back to the standard form [3] by 
rescaling @ = cy. 4 =a-’&, where 5 = Z(h+A’)/(21+1’). The result is that the density 
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amplitude ford < 2, and therefore the exponent 0 to lowest order, is modified by this factor 
of e [3]. In one dimension, the reaction A + A + A occurs in the domain wall dynamics 
of the q-state Pot& model with q # 2, with 1'jL = q - 2. Thus, to leading order in c. the 
power is modifidto 

q - - l  
. ,  4 ,  

@ = --+ O(C) 

so that, at least to this order, 0 increases with q as found ford = 1 [I]. The q-dependence 
is, however, more complicated for the higher-order terms. 

After this paper was completed, I was made aware of related work by Krapivsky et al 
[6], in which the problem with k = 2, considered above, appears as a limiting case, with a 
single immobile impurity, of a heterogenous annihilation process. Using the Smoluchowski 
approximation, these authors obtain results qualitatively similar to those found above. 

The author thanks A J Bray and B Derrida for communicating their work prior to publication, 
B P Lee for conversations on the renormalization-group approach and a reading of the 
manuscript, and S Redner for drawing my attention to [6]. This work was supported by a 
grant from the EPSRC. 
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